十国激光

第16卷 第10期

Ho3+离子及 HoP5O14 晶体的光谱性质*

苏 锵 王庆元 武士学 (中国科学院长春应用化学研究所)

Spectroscopic properties of Ho³⁺ ion and HoP₅O₁₄ crystals

Su Qiang, Wang Qingyuan, Wu Shixue (Changchun Institute of Applied Chemistry, Academia Sinica, Changchun)

提要: 根据 HoP₅O₁₄ 的吸收光谱和荧光光谱,用 Judd-Ofelt 理论计算了 Ho³⁺的强度参数。并计算了激发能级的辐射跃迁速率、辐射寿命、荧光分支比和积分发射截面等光谱参数。

关键词:光谱,五磷酸钬,稀土

一、引言

 Ho^{3+} 离子是常用于激光晶体的稀土离 子之一,在稀土离子中, Ho^{3+} 具有最多的受 激发射的通道(共有 12 个通道)⁽¹¹⁾, 从 0.551 μ m 的可见区(${}^{5}S_{2} \rightarrow {}^{5}I_{8}$)至 3.914 μ m 的近 红外区(${}^{5}I_{5} \rightarrow {}^{5}I_{6}$)都可实现激光发射。其中 一些激光波长还位于大气窗口和在光纤中传 输的低损耗区域,因此, Ho^{3+} 激光器在激光 测距和光纤通讯中的可能应用引起了人们的 关注。本文研究了 HoP₅O₁₄ 晶体的光谱性质,有助于了解它作为激光材料的可能性。

二、实验结果与讨论

将 Ho₂O₃ 溶于 H₃PO₄中,在金坩埚内加 热生长出 HoP₅O₁₄ 晶体,用 UV-360 型分光 光度计测量了室温下的吸收光谱,晶片厚度 为 0.521 mm,(见图 1);用 MPF-4 型荧光 光度计测量了紫外和可见区的激发光谱和荧 光光谱(见图 2)。

图1 HoP5O14 晶体室温时的吸收光谱

收稿日期: 1988年2月8日。 *国家自然科学基金资助项目。

跃 迁	光谱范围(cm-1)	σ (cm ⁻¹)	$ ho_{exp} imes 10^6$	$P_{\rm cal}{ imes}10^6$		
$5I_8 \rightarrow 5I_7$	4780~5380	5133.5	1.11	$\begin{cases} P_{ed} = 1.18 \\ P_{md} = 0.56 \end{cases}$		
$\rightarrow 5I_6$	8300~8860	8680.1	0.66	0.88		
$\rightarrow 57_5$	10900~11300	11223	0.16	0.16		
$\rightarrow {}^{5}F_{5}$	15100~15900	15600	1.87	2.10		
\rightarrow ⁵ S ₂ , ⁵ F ₄	18100~19000	18622	3.27	2.98		
$\rightarrow {}^{5}F_{3}$	$20280 \sim 21060$	20661	1.35	0.98		
$\rightarrow {}^{5}F_{2}$	$20940 \sim 21340$	21142	0.65	0.56		
$\rightarrow {}^{3}K_{8}$	21220~21680	21390	0.32	0.62		
$\rightarrow {}^{5}G_{6}$	$21680 \sim 23000$	22172	7.44	7.52		
$\rightarrow {}^{5}G_{5}$	$23000 \sim 24400$	24010	1.91	1.70		
$\rightarrow {}^{5}G_{4}$	$25600 \sim 26180$	25974	0.33	0.24		
$\rightarrow {}^{3}K_{7}$	$26100 \sim 26400$	26212	0.093	0.16		
\rightarrow ³ H_5 , ³ H_6 , ⁵ G_2	$27250 \sim 28320$	27624	2.67	2.16		
\rightarrow $^{3}L_{9}, {}^{5}G_{3}$	28320~29500	28986	0.72	0.71		
$\rightarrow {}^{3}K_{6}, {}^{3}F_{4}$	29500~30600	30030	0.48	0.52		
\rightarrow ³ L ₈ , ³ M ₁₀	33500~34500	34129	0.65	0.70		
\rightarrow (⁵ G, ⁵ D, ³ G) ₄	34300~35400	34843	1.26	1.64		
$\rightarrow^{/^{5}D_{4}, \ 3G_{3}, \ 3H_{4}}_{(3F_{2}, \ 1L_{8}, \ 3G_{5})}$	35400~36800	35971	1.41	1.27		
平均根方误差	(rms)		2.96×10-7			
	$\Omega_2 = 1.45 \times 10^{-20}$	$\tau_2 = 2.33$	×10 ⁻⁹ cm			
	$Q_4 = 1.40 \times 10^{-20}$	$\tau_4 = 2.25$	$\times 10^{-9}$ cm			
	$\Omega_6 = 1.46 \times 10^{-20}$	cm ² $\tau_6 = 2.34$	$\times 10^{-9}$ cm			

 $\Sigma Q_{\lambda} = 4.31 \times 10^{-20} \text{cm}^2$ $\Sigma \tau_{\lambda} = 6.92 \times 10^{-9} \text{cm}$

表1 HoP₅O₄晶体中的 Ho³⁺ 振子强度 P 与强度参数 τ_{λ} 和 Ω_{λ}

2.1 Ho³⁺ 在 HoP₅**O**₁₄ 晶体中的吸收光 谱、振子强度与强度参数

利用吸收光谱求得实验的振子强度 $P_{exp.}$, 按Judd-Ofelt理论^[2,3],用最小二乘 法的计算程序从18个⁵ $I_8 \rightarrow {}^{28'+1}L_{\mu}$ 的跃迁 按公式(1)以计算机求出三个强度参数 Ω_{λ} 和 计算的振子强度 Pcalo (见表 1):

$$P_{ed} = \frac{8\pi^2 m c\sigma}{3h(2J+1)} \frac{(n^2+2)^2}{9n} \\ \times \sum_{\lambda=2,4,6} \Omega_{\lambda} |\langle f^N(S, L)J \\ \times \| \overline{U}^{(\lambda)} \| f^N(S', L')J' \rangle|^2$$
(1)

•613 •

-		振子强度 P×106		强度参数×10 ⁹ cm					
	体系	$5I_{8} \rightarrow 5G_{6}$	${}^{5I_{8} \rightarrow 3H_{6}}$	τ2	τ4	$ au_6$	Στ _λ (J-O法)	<u>Σ</u> τ _λ (本法)	n
(1)	LaF3:Ho3+[10]	4.35	1.48	1.86	2.21	1.41	5.48	5.25	1.6
(2)	HoP5O14	7.44	2.67	2.34	2.21	2.47	7.02	7.66	1.6
(3)	HClO4-DClO4[11]	6.00	3.24	0.47 ± 0.18	4.05 ± 0.21	3.96 ± 0.21	8.48 ± 0.6	7.94	
(4)	HoCl ₃ -CH ₃ OH ^[12]	10.49	3.58	3.689 ± 0.303	2.872 ± 0.448	2.424 ± 0.303	8.985 ± 1.054	9.72	1.3288
(5)	$\mathrm{HoCl}_{3}{\boldsymbol{\cdot}}6\mathrm{H}_{2}\mathrm{O-CH}_{3}\mathrm{OH}^{[12]}$	11.58	3.82	3.847 ± 0.303	3.570 ± 0.435	2.754 ± 0.303	10.171 ± 1.041	10.35	1.3288
(6)	[HoW ₁₀ O ₃₅] ^{7-[13]}	12.83	-	4.55 ± 0.17	3.02 ± 0.25	${}^{3.26\pm}_{0.18}$	$10.83\pm$ 0.6	11.20	
(7)	${ m HoCl_{3}-C_{2}H_{5}OH^{[12]}}$	14.25	4.64	6.179 ± 0.148	2.531 ± 0.229	2.167 ± 0.148	${}^{10.877\pm}_{0.525}$	12.18	1.3610
(8)	$HoCl_3 \cdot 6H_2O - C_2H_5OH^{[12]}$	15.24	4.64	6.192 ± 0.404	2.894 ± 0.606	2.234 ± 0.404	11.32 ± 1.414	12.48	1.3610
(9)	YAlO3:Ho3+[10]	7.45	2.52	3.91	5.12	3.29	12.32	7.48	1.96
(10)	HoCl ₃ -n-C ₃ H ₇ OH ^[12]	16.88	5.28	7173 ± 0.192	3.285 ± 0.274	2.437 ± 0.192	12.895 ± 0.658	13.78	1.3854
(11)	$HoCl_3 \cdot 6H_2O-n-C_3H_7OH^{[12]}$	17.60	5.54	7.104 ± 0.534	3.449 ± 0.794	$2.601 \pm \\ 0.534$	13.154 ± 1.862	14.32	1.3854
(12)	Ho(PW ₁₁ O ₃₉) ₂ ^[13]	14.16	-	4.63 ± 0.14	3.80± 0.20	5.20 ± 0.14	13.63 ± 0.48	12.00	-
(13)	Ho(PW11O39)[13]	17.48	-	6.39 ± 0.06	3.86 ± 0.09	$4.34 \pm \\ 0.07$	14.59 ± 0.22	14.02	-
(14)	15BaO·85TeO2:Ho ³⁺ 玻璃 ^[14]	35.77	-	14.332 ± 0.647	6.164 ± 1.183	4.570 ± 0.430	25.066 ± 2.26	25.10	2.10
(15)	20Na2O-80TeO2:Ho ³⁺ 玻 璃 ^[14]	41.27	-	16.822 ± 0.534	6.842 ± 0.794	3.442 ± 0.497	27.107 ± 1.825	28.43	2.15
(16)	35ZnO.65TeO2:Ho ³⁺ 玻璃 ^[14]	39.01	-	14.997 ± 0.676	7.887 ± 1.234	4.667 ± 0.450	27.551 ± 2.36	27.06	2.036

表2 在不同基质中 Ho^{3+} 的振子强度 P 与强度参数 τ_{λ} 及其总和 $\Sigma \tau_{\lambda}$

的折射率(1.60), <**□**^(ω) **↓** 是单位张量算符 的约化矩阵元^[4]。

对表 1 中的 ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$ 跃迁,除了考虑 电偶极跃迁的振子强度 P_{ed} 以外,因为此跃 迁符合磁偶极跃迁的选择规则: $4J=0, \pm 1$ (0 (\Rightarrow 0), 4L=0, 4S=0,故还考虑其磁偶极 跃迁的振子强度 P_{md} 的贡献。按文献 [5] 计 算 P_{md} 值。

从表1可见,求出的三个强度参数分别 为; $\Omega_2=1.45\times10^{-20}$ cm², $\Omega_4=1.40\times10^{-20}$ cm², $\Omega_6=1.46\times10^{-20}$ cm²,或 $\tau_2=2.33\times10^{-9}$ cm, $\tau_4=2.25\times10^{-9}$ cm, $\tau_6=2.34\times10^{-9}$ cm, $\Sigma\tau_2=6.92\times10^{-9}$ cm, 由此求得的 振子强度计算值 P_{cal} 与实验值符合较好,平 均根方误差(r.m.s.)为2.96×10⁻⁷。

2.2 Ho³⁺ 离子的振子强度 P 与强度参 •614•

数的总和 Στ, 的关系

如果连同文献已报道的其他15个掺 Ho³⁺体系的强度参数 τ_{λ} 及其总和 $\Sigma \tau_{\lambda} = \tau_{2}$ + τ_{4} + τ_{6} 与振子强度 P 加以对比(见表 2), 就可以看出 $P = \Sigma \tau_{\lambda}$ 之间存在直线关系 P= $a\Sigma\tau_{\lambda}$ +b,特别是对超灵敏跃迁 ${}^{5}I_{8} \rightarrow {}^{5}G_{6}$ 和 ${}^{5}I_{8} \rightarrow {}^{3}H_{6}$ 更为明显。表 2 中一些 τ_{λ} 的数 据是按式(2)⁶⁰及折射率 n将文献中的 Ω_{λ} 换 算成 τ_{λ} 的:

$$\Omega_{\lambda} = 9.0 \times 10^{-12} \frac{m^2}{\chi} \tau_{\lambda} \qquad (2)$$

其中

根据表 2 的数据,以 TI-59 计算器求得 直线方程为:

 $\chi = \frac{n(n^2+2)^2}{9}$

 $P_1({}^5I_8 \rightarrow {}^5G_6) = 1650.6 \Sigma \tau_{\lambda}^{(1)} - 5.66 \times 10^{-6}$

跃 迁	波数 σ(cm ⁻¹)	振子强度 P×106		跃迁速率Ar(sec-1)		ΣAr	辐射寿命	荧光分支比	积分发
		P_{ed} .	P _{md} .	ed.	md.	(sec ⁻¹)	$\tau^{c}_{rad.}(\mu s)$	β_c	射截面 Σ ×10 ¹⁸ (cm)
$5I_7 \rightarrow 5I_8$	5133.5	1.31	0.56	59	25.4	84.4	11848	1.00	1.66*
$5I_6 \rightarrow 5I_7$	3546.6	0.68	0.67	14.6	14.3	173.6	5760	0.17	1.19*
$\rightarrow 5I_8$	\$680	1.13		144.7	}			0.83	0.996*
$5I_5 \rightarrow 5I_6$	2543	0.41		4.6	1			0.035	0.369
$\rightarrow 5I_7$	6090	1.16	82.5	73.2	}	129.7	7710	0.56	1.023*
$\rightarrow 5I_8$	11223	0.24	14.750 7	51.9		-		0.40	
${}^5F_5 \rightarrow {}^5I_5$	4377	0.18		5.9	1			0.003	0.16
$\rightarrow 5I_6$	6920	0.90		73.5				0.043	0.796
$\rightarrow 5I_7$	10467	1.67	1000	312.5		1710.9	584	0.183	1.479*
$\rightarrow 5I_8$	15600	3.17	1.5. 10	1319	J			0.771	
${}^5S_2 \rightarrow {}^5F_5$	2833	0.02		0.26)		1.000	0.0001	1.1.1.1.1.1.
$\rightarrow 5I_5$	7210	0.36		32.1		1.0.0		0.016	0.32
$\rightarrow 5I_6$	9753	0.78		126	}	2021	495	0.062	0.686
$\rightarrow 5I_7$	13300	2.49	NH: NA	752.7	1.000	C.		0.372	2.206*
$\rightarrow 5I_8$	18433	1.91	1.1.2	1110	J			0.55	1.693*
${}^{5}F_{4} \rightarrow {}^{5}F_{5}$	3022	0.22	0.29	3.46	4.5			0.002	
$\rightarrow 5I_5$	7399	1.12	1.1.1.1.1.1.1	104	1.1.1.1			0.033	0.985
$\rightarrow 5I_6$	9942	1.06		178.3	}	3154	317	0.057	0.935
$\rightarrow 5I_7$	13489	0.76	-	237				0.075	0.675
$\rightarrow 5I_8$	18622	4.44		2627	J		-	0.833	3.93*

表 3 H₀³⁺ 在 HoP₅O₁₄ 晶体中 |(S', L')J' > 和 |(S, L), J > 之间跃迁的振子强度、辐射 跃迁速率、辐射寿命、荧光分支比和积分发射截面

$$P_{2}({}^{5}I_{8} \rightarrow {}^{3}H_{6}) = 401.4 \Sigma \tau_{\lambda}^{(2)} - 0.30 \times 10^{-6}$$
$$\Sigma \tau_{\lambda} = \frac{\Sigma \tau_{\lambda}^{(1)} + \Sigma \tau_{\lambda}^{(2)}}{9}$$

利用实验测得的振子强度 P,按上式可 算出强度参数的总和 $\Sigma \tau_{\lambda}$,与用 Judd-Ofelt 理论所得的 $\Sigma \tau_{\lambda}$ 符合较好(见表 2)。在 Ho³⁺ 离子中存在这种 $P 与 \Sigma \tau_{\lambda}$ 之间的直线关系 $P=a\Sigma \tau_{\lambda}+b$,我们曾在 Nd³⁺⁽⁷⁷⁾, Tm³⁺⁽⁸³ 和 Er³⁺⁽⁹³⁾中也观察过,特别是对 4J=2的超灵 敏跃迁都存在这种关系。

2.3. Ho³⁺ 在 HoP₅O₁₄ 晶体中 的 自 发 辐射跃迁几率、辐射寿命、荧光分支比与积分 发射截面

求得 Ω_{λ} 后,可按 (1) 式及计算 P_{md} 的 公式和文献 [10] 给出的约化矩阵元 $|\langle ||U^{(\lambda)}||\rangle|^2$,计算 J 多重激发态 $|(S',L,)J'\rangle$ 和下能级 $|(\bar{S}, \bar{L})J\rangle$ 之间的振子强度 P_{ed} 和 P_{md} 。利用这些 P 和 σ 可按下式 计算 $|(S', L')J'\rangle$ 和 $|(\bar{S}, \bar{L})J\rangle$ 之间的自发辐射跃迁 速率 A_r 辐射寿命 τ_{rado}^e 和跃迁的荧光分支 比 $\beta_{c:}$

$$\begin{split} A_{r}[(S', L')J'; (\bar{S}, \bar{L})\bar{J}] &= \frac{8\pi^{2}e^{2}n^{2}\sigma^{2}}{mc} P \\ \pi^{c}_{rad} &= \{\sum_{\bar{S},\bar{L},\bar{J}} \operatorname{Ar}[(S', L')J'; (\bar{S}, \bar{L})\bar{J}]\}^{-1} \\ \beta_{\sigma}[(S', L')J'; (\bar{S}, \bar{L})\bar{J}] \\ &= \frac{\operatorname{Ar}\{(S', L')J'; (\bar{S}, \bar{L})\bar{J}]}{\sum_{\bar{S},\bar{L},\bar{J}} \operatorname{Ar}[(S', L')J'; (\bar{S}, \bar{L})\bar{J}]} \end{split}$$

其中 $\sum_{n,J}$ 是对所有可能的终多重态 $|(\bar{S}, \bar{L})$ \bar{J} 求和,表示从始态辐射衰变时的总跃迁速 率。计算所得的数据列于表 3。

目前, Ho^{3+} 约有 45 种晶体通过 12 个通 道实现激光输出⁽¹⁾, 在稀土离子中是激光通 道最多的元素, 其中以 ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ 的通道研究 最多,发射 2 μ m 激光波长。现已发现很多 具有大的振子强度和积分发射 截面 Σ 大于 10⁻¹⁸ cm 的跃迁, 或上述数值略低, 但具有荧

(下转第611页)

使用所研制的玻璃,在0.5×3×14cm 板条激 光器中实现3pps、每脉冲输出12.5J的激光运转。 通过主动锁模,在连续波钕玻璃激光器中实现了 80ps和7ps的脉冲输出^[8.9]。

鉴于磷酸盐激光玻璃的优良激光性能,国内外 均已逐步取代硅酸盐玻璃。器件设计时必须发挥其 优点,实现低输入下高质量光束的高效运转,以弥补 磷酸盐玻璃抗热炸性能方面的不足。同时注意在停 止使用时对玻璃棒的保护。生产线的实践已表明它 的工作是稳定的。

作者感谢章丕中、曹渭楼及各自的实验组在应 用方面的开拓,感谢干福熹、姜中宏教授对本工作的 支持。

参考文献

- 1 Hoya laser glasses, Hoya Corroration, 1982
- 2 Schott laser glasses, Schott Glass Technologies Ine USA
- 3 The Kigre family of laser glasses, Kigre Inc. USA, 1982
- 4 茅森 et al., 玻璃与搪瓷, 15(3), 10(1987)
- 5 毛涵芬 et al., 中国激光, 1989, 16, No11 (待发表)
- 6 Jiang Yasi et al., J. Non-Cryst. Solides, 80, 623 (1986)
- 7 Jiang Yasi et al., Collected papers XIV Intn. Congr. on Glass, 1986, NewDelhi 118
- 8 Strobel S. A. et al., Appl Phys. Lett., 45 (11), 171 (1984)
- 9 Yan L. et al., Opt. Lett., 11 (8), 502 (1986)

(上接第615页)

光分支比特别高和上能级寿命长的跃迁可以 产生激光发射^[15,16]。对于 HoP₅O₁₄ 晶体,满足 振子强度大于 1×10^{-6} 和积分发射截面大于 1×10^{-18} cm 的一些跃迁以 * 号列出于表 3 中。虽然 Ho³⁺ 的 [${}^{5}F_{4}$, ${}^{5}S_{2}$] $\rightarrow {}^{5}I_{8}$, (0.54 μ m), ${}^{5}S_{2} \rightarrow {}^{5}I_{7}(0.75 \mu$ m)和 ${}^{5}F_{5} \rightarrow {}^{5}I_{7}(0.95 \mu$ m)的振子强度和积分发射截面都较大,但 目前只在氟化物系统中实现了这些跃迁的激 光输出,在含氧化合物中尚未实现激光振荡。

晶体由白云起同志提供,特此致谢。

参考文献

- A. A. Kaminskii; Laser Crystals: Their Physics and Properties, Springer-Verlag, Berlin Heidelberg, New York, 1981
- 2 B. R. Judd, Phys. Rev., 127, 750(1962)
- 3 G. S. Ofelt, J. Chem. Phys., 37, 511(1962)
- 4 R. Reisfeld and C. K. Jorgensen, Laser and Excited States of Rare Earths, Springer-Verlag.

Berlin Heidelberg, New York, 1977, p. 141

- 5 M. J. Weber, Phys. Rev., 157, 262(1967)
- 6 R. D. Peacock, Structure and Bonding, 22, 83 (1975)
- 7 Su Qiang and Lu Yuhua, Rare Earths Spectroscopy, World Scientific, 1985, p. 379
- 8 Su Qiang et al., Rare Earths Spectroscopy, World Scientific, 1985, p. 385
- 9 Su Qiang et al., Chinese Physics-Lasers, 13(11), 825(1986)
- 10 M. J. Weber and B. H. Matsinger, J. Chem. Phys., 57(1), 562(1972)
- 11 W. T. Carnall et al., J.Chem. Phys., 49 (10), 4412(1968)
- 12 B. Keller et al., Chem. Phys. Lett., 92 (5), 541 (1982)
- 13 R. D. Peacock, J. Chem. Soc. A., 2028(1971)
- 14 R. Reisfeld et al., Chem. Phys. Lett., 38, 188 (1976)
- 15 J. A. Caird and L. G. DeShazer, *IEEE J.* Quant. Electr., **QE-11**, 97(1975)
- 16 J. A Caird, IEEE J. Quant. Electr., QE-11, 874(1975)